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Abstract—Turbulent flows of dispersed multiphase solid—fluid mixtures are considered. From the global
equations of balance for each phase and via a special ensemble-averaging technique, the local conservation
laws for the mean motions are developed. Particular attentions are given to the averaged form of the
Clausius—Duhem inequality and the fluctuation energies of the fluid phase and the particulate constituents.
The thermodynamics of the mixture in the turbulent state is studied. The concept of coldness of turbulence
for each phase is introduced, the free energy function is discussed and several thermodynamical relation-
ships are established. Based on the averaged entropy inequality, constitutive equations for the stresses,
energy and heat fluxes of various species are developed. It is shown that the model contains the recently
developed turbulence models for dilute two-phase flows and dense granular flows as special limiting cases.
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INTRODUCTION

Developing models capable of describing various multiphase flow regimes has attracted consider-
able attention due to their significant industrial applications. Extensive surveys of the literature on
earlier and recent works were provided by Soo (1967), Ishii (1975), Hetsroni (1982), Drew (1983),
Bedford & Drumbheller (1983) and Ishii & Mishima (1984).

The existing theories of multiphase mixtures may be roughly classified into two categories. In
one class the basic balance laws are postulated and continuum thermodynamics is used to arrive
at appropriate constitutive laws. Typical examples are models developed by Passman et al. (1984)
and Ahmadi (1980, 1982). In the other class, averaging techniques are employed to derive the
fundamental balance laws. Several different averaging methods were used in the past. Drew (1983)
and Ishii (1975) used the time-averaging technique, while Nigmatulin (1979), Hassanizadeh & Gray
(1979) and Ahmadi (1987) employed the volume-averaging method. In many of the frequently used
models (Soo 1967, 1981; Ishii 1975; Hetsroni 1982; Drew 1976, 1983; Ishii & Mishima 1984), the
constitutive relationships were prescribed based on physical intuition and the restrictions imposed
by the entropy inequality were not considered. Furthermore, the existing averaging models are
limited to the first-moment equations. That is, only the mean of microscopic balance laws are
considered and the higher order moments of these laws are totally ignored.

The importance of turbulence kinetic energy in turbulent flows of homogeneous fluids and its
significance in developing turbulence models is now well-understood (Launder & Spalding 1972;
Rodi 1982; Jones & Launder 1972; Launder et al. 1975; Lumley 1978, 1983; Ahmadi 1984).
Modeling dispersed two-phase turbulent flows was considered more recently. Genchev & Karpuzov
(1980), Taweel & Landau (1977) and Chen & Wood (1985) studied dilute gas—particle flows. In
these models, the main assumption is that the particles are being simply transported by the carrier
fluid flow. The effects of the particulate phase in modifying the fluid turbulence are, thus, totally
ignored. Elghobashi & Abou-Arab (1983) developed a model which includes, in part, the inter-
action effects. However, their model neglects the particle kinetic and collisional effects and hence
is still limited to relatively low concentration mixtures. Recently, Besnard & Harlow (1985) and
Kashiwa (1987) proposed more elaborated models that offered certain improvements. Nevertheless,
these models were not concerned with dense mixtures and particle collision effects.
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The existing models for two-phase dispersed turbulent flows appear to be deficient in the
following respects:

(i) Particle—particle collisional effects are generally neglected.
(ii) Only dilute mixtures are considered.
(iii) The effects of fluctuation kinetic energy of the particulate phase are neglected.
(iv) The interactions of the fluid and particulate phases are only partially considered.
(v) Itis not clear if the closure assumptions used satisfy the required invariance and
realizability conditions.
(vi) The requirements of the second law of thermodynamics are totally ignored.

In summary, an adequate model for describing two-phase turbulent flows of dense fluid—solid
mixtures is not, as yet, available.

Recently, there have been interesting developments in modeling rapid flows of granular materials.
The kinetic theory of gases was extended to model the motion of a dense collection of nearly elastic
spherical particles (Ahmadi & Shahinpoor 1983a; Lun et al. 1984; Jenkins & Richman 1985;
Ahmadi & Ma 1986). In the work of Ma & Ahmadi (1988), the effects of interstitial fluid were
introduced in the kinetic model but the governing equations of motion of the fluid phase were not
discussed.

Techniques similar to turbulence modeling for describing the motion of granular materials were
introduced by Blinowski (1978), Ahmadi & Shahinpoor (1983b), Ahmadi (1985b) and Ma &
Ahmadi (1985). In these latter works, a one-equation turbulence model for rapid flows of granular
materials was developed which was shown to be consistent with the kinetic models for spherical
nearly elastic particles. Ma & Ahmadi (1985) also showed that the model was capable of predicting
the features of Couette and gravity rapid granular flows with reasonable accuracy.

Until very recently, the implications of the second law of thermodynamics in turbulence modeling
were not studied. In the work of Ahmadi (1984, 1989), the averaged form of the entropy inequality
for an incompressible fluid was derived and a thermodynamics for turbulence was developed. In
this formulation, the turbulent fluctuation kinetic energy is treated as a second temperature,
analogous to the molecular fluctuations which give rise to the thermodynamic temperature. Based
on thermodynamical arguments, a two-equation model for turbulence was developed which
resembles the well-known k—¢ model. Comparing the predictions of the new model with
experimental data, Busnaina ef al. (1986) have shown that the model in its simplest form is superior
to the standard k—e model.

In this work, the global conservation laws for each phase are considered. The ensemble-averaging
method is directly applied to the integral form of the balance laws. Favre’s (1965) mass-weighted
averaging for each phase is used and the global conservation laws for the mean motions of various
species are derived. Using the divergence theorem, the local forms of the basic laws of motion for
different constituents are developed. Particular attention is given to the formulation of the averaged
Clausius—Duhem inequality. The equations governing the fluctuation kinetic energies of the
particulate and fluid phases are derived. Based on the averaged entropy inequality, constitutive laws
for the mean motions of different species are developed. It is shown that in the absence of the
particulate phases, the model resembles the standard k—¢ model of turbulence. When the fluid
effects are neglected and only a single particulate phase is present, the model reduces to that
obtained from the kinetic theories of granular materials. In the accompanying paper (Ma &
Ahmadi 1990, this issue, pp. 341-351), the predictions of the model for simple shear flows of a dense
mixture are compared with the experimental data.

GLOBAL BALANCE LAWS

Consider a dispersed mixture of » distinct particulate phases and a single fluid phase. The global
balance laws for the ath phase in the multiphase mixture, in the absence of chemical reaction and
interfacial mass transfer are given as:

—a‘J.ﬁ- p“‘dV+J‘J- p*vin;d4 =0; (1]
ot v A

conservation of mass,
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balance of linear momentum,

f— ptvedV + prvivin;dA =Jff p“f?dV+J‘J. tin,dA +‘”~J~ P:dvV; [2]
5t Vv A 4 A 4

balance of mechanical energy,
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conservation of energy, g Y
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Clausius —Duhem inequality,

n+1
Y l:ﬁ J‘J‘J p“n“dV+fJ p*ntvin;dA —‘U g:9°n,d4 —J:” (r“.9°‘+r1°‘+)dVi|>0. [5]
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In these equations, ¥ is a fixed volume of space with surface A4, v is the instantaneous velocity
vector, p is the density, n is the unit normal vector, f is the body force per unit mass, ¢, is the stress
tensor, P, is the interaction momentum supply per unit volume, e is the internal energy per unit
mass, ¢; is the heat flux vector pointing outward of an enclosed volume, r is the internal heat source
per unit volume, e* is the interaction energy supply, n is the entropy per unit mass, n* is the
interaction entropy supply and § is the coldness, defined as
1
3= 9 (6]

where 6 is the temperature. The superscript a (1 < o < n) represents the ath particulate phase and
o =n + 1 (superscript f is used later) denotes the fluid phase. Note that all these field quantities
have highly irregular and discontinuous distributions due to the corpuscular nature of the
particulate phases. Throughout this work the regular Cartesian tensor notation with Latin
subscripts is used. Thus, indices after a comma denote partial derivatives and d/d¢ stands for the
total time derivative.

In a state of turbulent motion, the field quantities for all phases behave randomly and fluctuate
vigorously. Each random function could be expressed as a sum of a mean and a fluctuating part,
ie.

and

*=p"+p¥, p¥ =0,
v; =T+ 07, vf =0,
P:=P:+ P, P =0,
0° =0 + 6, 6% =0,
9% =J* + 9, 9¥ =0,
=T+ 1, 15=0,
9 =7 +4qf, g7 =0,
et =t e, e =0,
=g, T =0, (7

Here, a bar over a character stands for the expected value (ensemble average) and a prime denotes
the fluctuating part. The body force and heat source are assumed to be nonfluctuating. As pointed
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out by Favre (1965), it is possible to obtain convenient forms of the equations governing the mean
motion by introducing a mass-weighted ensemble averaging for certain field quantities (Ahmadi
& Shahinpoor 1983b; Ahmadi 1989). Accordingly, the following decompositions are introduced:

pr=drof, o= pr=fll
p p
. aea
e“=é’“+€“, éa:p—a s
p
13 o 14 4 « p?’]
nt=g"+n", A=+nT= o (8]

Here, a tilde over a character represents a mass-weighted ensemble-averaged quantity and a double
prime stands for the fluctuating part relative to the mass-weighted averaged magnitude. Equation
[8] also shows that v¥ is proportional to the fluctuation velocity—density correlation. Note that the
ensemble average of a double prime quantity is not zero, while

pevf =pte” =pn* =0. 9]
The decomposition of the mass-weighted averaged entropy needs further explanation. In line with
Ahmadi (1984, 1989), it is assumed that the mean entropy #* is composed of two parts, #* and
n*T. These mean entropies correspond to the molecular and turbulent agitations, respectively.
While #¢ is a function of temperature, n°T is expected to be a function of the state of fluctuation
(turbulence) of the ath phase. Thus, for an isothermal turbulent flow, /* is a constant while 77

is a variable.
Taking the ensemble average of [1]-[5], and using the decompositions given by [7] and [8], the
integral form of the balance laws follows. These are:

”f dV+J.J‘ pin,dA = 0; [10]
balance of linear momentum,
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at v A A
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balance of mechanical energy,
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conservation of energy,
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conservation of mass,
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and

Clausius—Duhem inequality,

n+1 —_—
+ [ J\‘U dV+J‘ (P *0% + p*n* o )n;dA
a1 0t A
—J‘J‘ G2+ q¥ 9%)n,d4 —J‘j (r“9“+ﬁ“)dV:|>0. [14]
A v

In these equations, k* is the fluctuation kinetic energy of the ath phase defined as

P

v v’
—aka= [ RS
p p 2

Equations [10]-[14] are the global conservation laws for the mean motion of the multiphase
mixture.

(15)

DIFFERENTIAL BALANCE LAWS

Even though the instantaneous field variables in a dispersed multiphase turbulent flow are highly
irregular, discontinuous and nondifferentiable functions, their averages are continuous, smoothly
varying, differentiable functions of space and time. Therefore, the integrands in [10]-[14] are
well-behaved functions and the integral theorems could be used. Applying the divergence theorem
to the surface integrals in [10]-[14] and rearranging terms, the differential balance laws for the mean
motion of the multiphase mixture follow.

The differential forms of the equations of the conservation of mass for the ath particulate phase
and for the fluid phase, as obtained from [10], are given as

op* 0

E“i"g;j(p Uj)=0 [16]
and
o ' ot
3 ( 7)) =0. (171
When the ath particulate phase is incompressnble, it follows that
pr=p*vs, (18]

where v* is the mean volume fraction of the ath phase. Since p® is a constant, [16) may now be
restated as

o 0, ..
-a'f‘-a—;J(V Uj)—o- [19]
Similarly, when the fluid phase is incompressible with constant density pf, we find
pf=p"' {20}
and [17] may be rewritten as
6vf 0 i
I 6 —f 7;)=0. [21]

J
For fully-saturated mixtures, the following constraint is imposed:

vid Y =1 [22]
a=1
Equation [11] leads to the local forms of the balance of linear momentum for the ath particulate
phase and for the fluid phase. These are
dﬁ“ e OO a:;
=pif* 4 ! ! Pu
P+ ax, 6x, + [23]
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and

dﬁr (?tr (?t"}r =
—=p'fi+ <=+ P [24]
J 6 J
Note that for the particulate phases, the fluctuation (kinetic) stress tensor ¢%' and the collisional
stress tensor tj; are combined, i.e.

=T 4T, 1=~ pt¥ (25]
and
t“ =r5—T15, {26]

is the average stress tensor in the absence of collisional effects. The fluid turbulent stress tensor
tif is defined as

1ff=—plvf. [27)
Based on [16] and [17], the equation of the conservation mass for the entire mixture becomes
op 0
=+ (p5)=0,
TREAG) [28]

where the density of mixture 5 and the velocity of mixture #; are defined as
p'+ 2 Y PE=p'0j+ Y PO [29]
=1 a=1

Similarly, the balance of linear momentum for the entire mixture follows by adding [23] and [24]
for all the species, i.e.

o, 01,
p— 30
3 =pfi++= ax (30}
where the net stress is defined as
=T+ T —polol+ Y 3%+ 1% — pdto?) + piid). (31]

=1

In the derivation of [30] we have used the condition that the net interaction momentum supply must
be zero, i.e.

P+ =Pi= -3 P (32

x=1

The balance of mechanical energy, as given by [12], may be restated in differential form as

__1d ﬁal’a +_adka_ 0 an?”U?”vu,, _ 6(—;W~“)
Par Plar = Ta\ 2 V)T P

S AR RS TR R L R S Y S KX ]

Multiplying [23] by % and subtracting the result from [33], the equation governing the evolution
of the fluctuation energy of the ath particulate phase follows:

dk* é [pro¥ vy .
ke T =___a;(p_v§__07 —vf t,,) prvi v oY — 150t +v t}",j+v°‘P°‘ Pepe, [34]
j

Equation {34] may be rewritten in a compact form as

- dk® 5
adt T4 f‘J—v 'p%+ K5, — pre* + ptst, [35]

where

av

Pret=pe  +e€), preT=1tjvy, Pl =1l (36]
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Here, ¢* is the dissipation rate for the ath phase per unit mass (Harlow & Nakayama 1967; Rodi
1982), ¢* and ¢™ are the particulate collisional and viscous dissipation rates (Ahmadi 1985b) and
t;'jv=t;lj+pa5‘j [37]

is the viscous (dissipative) part of ;. For nearly elastic particles ¢*" is negligible, while for relatively
dilute particulate concentration ¢* may be neglected. In [35],

U?”U? " a" gav o sac o a0
K}‘=—p"——2—vj-‘ +of ot —vip [38]
is the particulate fluctuation energy flux vector and
pis* =v*P¢— P2 =¥ P? [39]

is the particulate interaction fluctuation energy supply term. Note that in [35], the particulate
fluctuation pressure—velocity gradient correlation term v¥; p* was neglected. Equation [35] clearly
shows that the particulate fluctuation energy is being produced by the action of the total fluctuation
(kinetic + collisional) stresses in a mean shear field and is being transported by convection and
diffusion and is being dissipated. Equation [35] also shows that fluctuation energy could be supplied
or extracted through the interaction source term. There is also a secondary source term related to
the product of the density—velocity correlation and mean pressure gradient field.
For the fluid phase, [34] may be restated as

_dkf o T _ _
Pl =thdL—vi P+ K= ple +p's, [40]
where the fluid turbulent kinetic energy k' and fluid dissipation rate ¢’ are defined as
- vi v
prkf=p" 5 [41]
and
pref=1tfol, [42]
respectively. Here,
U€~Ur” " 7 =
K= —pf%vf + ol el —ol'pt, [43]
is the fluid fluctuation energy flux vector and
p's=oTPl— Plo| =l P, 44

is the fiuid fluctuation energy supply term. The instantaneous stress tensor in the fluid phase is
expressed as

1= —p'o;+ t,r-‘.‘/’ [45]

where ¢f} is the viscous part of the fluid stress tensor and p' is the fluid hydrodynamic pressure.
Like the particulate case, the terms corresponding to production, diffusion, dissipation and
interaction supply of fluid fluctuation energy can be identified in [40]. Here, the fluctuation
velocity—pressure gradient correlation term v, p" was also neglected.

Subtracting the mechanical energy equation given by [12] from [13], we find

i péecdv + présindA + pe*v¥n.dA
(?t v y 77 4 7
=ﬂT tj-‘,-vjf,dV+JJ gin,d4 —JIJ v?P‘}‘dV+JI[ (r*+e*r)dv. [46]
Vv A 4 14

Applying the divergence theorem to the surface integrals in [46], we find

_,dée*  _ _ P S -
P =T+ 4+ PR T — VTP — BT+ 14 8, 7]
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where
gt =ptevf (48]

is the arth particulate turbulent heat flux vector. Equation [47] is the statement of the local form
of the conservation of energy for the ath particulate phase.
Similarly, the equation for the conservation of energy for the fluid phase in differential form
becomes
de' - — —
Pl =T+ 4+ P+ T8, —viPi—plol +r 2", (49]

where
gT=p'e" vl [50]

is the fluid turbulent heat flux vector. Note that in [47] and [49], the fluctuation pressure—velocity
gradient correlation terms p*v%; and p"v!; were neglected.

Using the divergence theorem in the entropy inequality equation given by [14], the differential
form of the Clausius—Duhem inequality follows. The results may be restated as

n+1
)} [ﬁ“ﬁ“ —~ (%), — R —r* &+ p*p*T — ST - ﬁ“] 20, [51]

a=1

where the turbulent entropy flux vector ST and the heat flux—coldness correlation vector R®T are
defined as

ST = —p*oin” (521
and
R =q7 8°%. [53]

We now introduce the Helmholtz free energy functions for each phase for the mean thermal and
turbulent fluctuations as

ga oT
lﬁa=é~a__%;’ lllaT=ka'—ggT’
Af fT
V=g Tk —1n [54]

Here, 3°T and 9T are the particulate fluctuation and the fluid turbulence coldness defined analogous
to the thermal coldness. Their precise expressions will be introduced in the next section. Here,
it suffices to point out that, based on the disparity of the scales of molecular fluctuations and
turbulence agitations, independent coldness and free energy functions, given by [54], are considered.
Furthermore, the kinetic theories of single-phase monoatomic gases and nearly elastic spherical
granular particles may be used to justify the forms given by [54]. It should be emphasized that the
underlying assumption for treating phasic turbulence kinetic energies as thermodynamical variables
is their persistence on the macroscopic time scales of interest.
Using [35], [40], [47], [49] and [54] in [51], the result may be restated as

a=1

4 ] =q « Py 9.“ =a aT fa ~a =q .
Z | -p 'ﬁ -1 _(9a)2 +g;,+q;; + v+ pe
_l(—u‘qa) _l}mpq_ —asa_ﬁaﬁ_quT+Ea+_lﬁa+
91 qi o it P ii lga i 9“‘
LA -
+ 3] 5 (V-1 )+ A g+ Thel 4

1 _ 7 1 - 1_
@S, ot B st P - R 47 = g |
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oT

: ~of § v _ 1
+ ZIS“T[—P“<¢“T-W°‘T (gﬂ)2>+r;,.vz,—p"e“-v?p:',-+K;_,.+p“s“—9aTS;'T]

grr - 1
+9”[ ‘f<|&” Sn)2)+t}?ﬁ{j—ﬁ’ef—vfﬁf,+Kﬁj+ sf—ny,fT—J>0, [55]
where [39] and [44] are also used. Equation [55] is the averaged form of the Clausius—Duhem
inequality for turbulent multiphase flows.

CONSTITUTIVE EQUATIONS

To develop a model for the mean turbulent motion of a single-phase fluid, the mean field is
essentially treated as a non-Newtonian and multitemperature material (Lumley 1970; Ahmadi
1985a). In the present formulation, we are concerned with multiphase turbulent flows. The mean
field equations governing the mixture motion are given by [16], [17], [23], [24], [35], [40], [47], [49]
and [55]. In this section, based on the averaged entropy inequality given by [55], a set of constitutive
equations for the mean turbulent multiphase flow will be developed. Following Ahmadi (1989), in
analogy with classical thermodynamics and kinetic theories of monoatomic gases and granular
materials, we assume

R?T = q;zT‘ga’ SaT KasaT
RT=g¥, ST=KI97 L. [56]

That is, an entropy flux is assumed to be equal to the product of the energy flux vector and the
corresponding coldness. For the fluid phase, a vector E is introduced in [56] to account for the
possible differences. It may be shown that Ef is related to the diffusion of the dissipation rate
(Ahmadi 1989). Using [56], [55] may be restated as

n _ . ‘g.a 1 . _ . — 1
ugl gali_ptI(lpa_na(_‘_g_a_)_z)_ﬁQ?gﬁ_*_t;ziv;i_’_puea _U?Pr_ﬁasa__ﬁa 7"_+éa+ _ﬁﬁa*‘}
1~y 9r | T PV S S na PR
+3 '/’ (gf)z “§fQi9.i+tjivj.i+P€ _Uipi—Ps PU it e —§f’1
aT

2 g - _ 1
+n;9“[ <¢“T—'1“T(9n)2) ,,v,,—v PY— pre* + pis® — SHK“S“T}

: grr
+9”|:—ﬁf(lﬂ”——n” )+tf,Tv,j—v P, ﬁr€r+ ﬁfsf_Lngrr_*___‘Ef]/O’ [57]

(9(T)2 Sf'l' SFT
where Q% and QFf are the total heat flux vectors defined as
Qi=7i+4q!", Qi=gi+ql" (58]
The constitutive independent variables are
pe P, 9T, 59, 3r, 90T § 9T, de, Al e € [59]

These are all frame-indifferent tensors and 3“ and gr are the mean deformation rate tensors defined
as

dy=3@+ 53, dy=300,+7)). [60]
Along the line of Ahmadi (1989), the following set of frame-indifferent constitutive equations are
proposed:
‘pa=‘["u(l—,a, 39, lpaT___.l,uT(ﬁm’saT,eu)’
d;r=.pr(ﬁf 9[) lﬁ”:d/”(ﬁf 9T, f)
T =1(p% 9° 3,), £ =t,j(p 9T, J‘;‘j, o,
=155 8. ), 15", 97, &l ),
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0: = QX7 3,51, Ki=Ki(5%, 97,87, ¢"),
0i=01(7" 8.5, Ki=KIi(p', 8™ 97, c",
of =07 (% 5% 9%, 55, 8T, =),

E = vi (ﬁf’ ﬁ,ri’ ‘gfs 9{1’9 9f'l" ef),
Ef=E'(5", 9", 87, ¢', '), [61]

Note that for incompressible constituents the respective densities could be replaced by the
corresponding volume fraction in the constitutive relations given by [61]. Strictly speaking,
according to the principle of equipresence of continuum mechanics all the constitutive dependent
variables must, in general, be functions of all the independent constitutive variables. For simplicity
of analysis, this principle was not fully utilized and only the most relevant variables are included
in the constitutive equations given by [61]. Note also that should additional independent variables
be included in the expressions for the free energy functions, the entropy inequality will force the
reduction to the forms given in [61]. However, this additional mathematical exercise is not
considered here. Employing [61], [57] may be restated as

0 aa
Z g I: (al‘ga (5&)2)9“ gaQ 9"‘+(tﬂ+p (S'j)v1,+p

+‘§f __p-f gﬂ_ ﬁf Qrgf (7[+ﬁf5)5|'+,—)f€f
69f (9[)2 ‘gf JE yrv i

|
~Cz
§-
|
I
“
|
1l
<

_,. —:";+Ef+__girﬁf+:|

+ i 9aT —q alpaT rlaT 94'1' “Té
—P 691T (‘gaT)Z +(le+p r})vu

DY F—a_‘_—as 1 KaSmT -a waT
p i p.f p SaT ae

+ 9 _5f oy g g [T s
-p Fri (grr)z +(T+p ,,)U,j

_ — N 1 _ fT
—pfef—v,fpf,»+pfs‘—FKf'S‘”+WEr prépf :|>0, [62]
where
_ 0¥ 2 YT
az )2 oT ay2
=(p )8‘“’ P =(p%) Fra
f fT
—(pf)za*” T (p r)2‘3"’ [63]

Here, certain consistency conditions for pressures are required. These are
paT=,yaﬁaka, pr=_§_ﬁfkf’ [64]
where y* is a function of the solid volume fraction v*.

For a dispersed mixture when the particles are not in direct contact except during the relatively
short period of collision and surface tension and Brownian motion effects are negligible, it may
be assumed that

ﬁa=v1pf, p-l':vfpl" [65]

where p' is the mean pressure in the fluid phase. (For a fully-saturated solid-liquid mixture, this
assumption will be justified in a latter section.) According to McTique et al. (1986) and Ahmadi
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(1987), there are reasons to suggest that the particulate phase mean pressure exceeds that of the
surrounding fluid in direct proportion to the square of the mean velocity differences. Ahmadi (1987)
also has shown that with an appropriate choice of /* one could derive the pressure differences as
well as the virtual mass forces. However, this further refinement is not considered here and [65]
will be used.

Equations [63] and [64] impose additional restrictions on the expressions for the mean free energy
functions. Demanding that the entropy inequality [62] holds for all independent variations of 3¢,
31 9°T and 81, it follows that

a aT
= (9«)2 lgu, (SaT)Z lgﬂ_’
fT
—@p o 6]
The mean temperatures are defined as
ao Ll g1
b=go O=g [67)

Note that % and §" are, in general, different from the mean temperatures & * and § . They are equal
only within the limit of a linearized theory.

According to Ahmadi (1989) the coldness of turbulence must be inversely proportional to its
kinetic energy. Thus,

CfT
97—, 9=, 68]

where C*T and C'T are some positive parameters corresponding to the energy capacities of turbulent
fluctuations with C™ = C{T¢f and CIT > 0. Employing [66]-[68], [62] reduces to

z [ Q0%+ (73 + p*0,)05 + pre* — 5 P — pos™ — P, + 8% — 9“"1”]

11 - _ —
+§rf[5~fo0f,~+(t,’»i+ﬁf6,-,-)ﬁ£i+5‘ef—ﬁ,‘»P,f— —poli+ *—éfﬁ“]

n az 1 a oT
Z [ L+yipik® 5,,)v,j—p“e°‘—-vp +p°‘s°‘+ Kik%—p*— l// :I

ol — 1
+?[(1}?+§ﬁrkr5ij)ﬁ£j_ﬁr€r‘vg ﬁ.ri'*'l—’ +err< )
kf l//
C” —=Ef, — _5 ] =20. [69]

Inequality [69] imposes important thermodynamical restrictions on the admissible forms of
constitutive equations. Many dependent and independent constitutive variables appear as simple
products in the entropy inequality given by [69]. Therefore, linear constitutive equations consistent
with the Clausius—Duhem inequality may be formulated. In the following, formulations of isotropic
quasi-linear constitutive equations are considered.

Assuming that the stresses are linear functions of the corresponding mean deformation rate
fields, it follows that

= —(P* + 3utdsn) 0, + 2u°ds, (70}
Th=—0"p k" + suaTazmm)‘sij'{"z#aTaZa [71]
1= —(p'+¥u'd,)6,+2u'dl; [72]
and
1] = =3Pk + uT )+ 207 . [73]

MF 1612—K
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Equations [70]-[73] are extensions of the Boussinesq constitutive equation for the Reynolds stress
tensor to multicomponent systems. In these equations u* and uf are the coefficients of viscosity
which are functions of the solid volume fractions, and u°T and u'™ are the coefficients of turbulence
(eddy) viscosity. Along the lines of the Kolmogorov—Prandtl hypothesis (Launder & Spalding 1972;
Rodi 1982), it is assumed that

Cfp—fkfz
T = p (k%)

uaTz Cauﬁala(ka)l/l, - ,
€

[74]
where C* and C* are parameters which depend on v* and v/, and /* is an appropriate length scale
of the «th particulate phase. The choice of length scale for a particulate phase needs further
elaboration. For relatively dense collision-dominated mixture flows, the diameter d* is the natural
length scale. Such a choice may be justified based on the kinetic models of Lun ef al. (1984) and
Abhmadi & Ma (1986). For dilute mixtures, the fluid turbulence dominates and the particles are
essentially transported by the fluid phase. Hence, the fluid length scale is the only relevant scale
(Besnard & Harlow 1985). For intermediate ranges of solid volume fractions, turbulence is mainly
generated by particle—fluid interactions. In this case the most relevant scale is the mean interparticle
distance. Note also that the Stokes assumption is also used for the second coefficients of viscosity
in constitutive equations [70]-[73].
The constitutive equations for the density—velocity correlations are given by
oT

w_ __H =x
=l [75]
and
T
T U =f
v = _orpp-rkrpyi’ (76]

where ¢*® and ¢ are parameters which are, in general, functions of v* and v'. Equations [75] and
[76] are generalizations of that proposed by Ahmadi (1989) for single-phase compressible turbulent
flows.

The fluctuation energy fluxes are assumed to be given as

oT

fT kf
K=tk Ki=(u s )(k-5et). (77

where ¢* and o™ are parameters corresponding to the Prandtl numbers for turbulence energy
fluxes. The expression for the fluid energy flux, given by [77], contains an additional term which
depends on the gradient of the dissipation rate. Such a form was obtained earlier by Yoshizawa
(1985) from a rigorous analysis for a single-phase fluid turbulence.

We assume that the heat fluxes satisfy the extended Fourier law of conduction, i.e.

Qi =(k*+xT) 0%, Qf=("+xT)6", (78]

where « is the heat conductivity and the superscript T refers to turbulence.

The constitutive equations given by [70]—[78] are compatible with the averaged Clausius—Duhem
inequality given by [69]. The entropy inequality also imposes the following restriction on the
parameters:

uazo’ #fz 0, uaT;O, ufT;O’
k*=20, x'=20, k20, x>0,
c®20, ¢20, ¢%=0, ¢*>0. [79]

To derive the required constitutive equations for the remaining terms, we restrict ourselves to
isothermal mixtures. The interaction momentum supply terms must satisfy the following entropy
inequality for an isothermal mixture:

—51PI— Y 5 Pi>0. [80]
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Using [32), [80] may be restated as
Y Pi@i—85)>0. (81]

a=1
The mean interaction momentum supply for the ath particulate phase satisfying [81] is given by
P: = D35} — o), [82]
where Dj; is a positive definite matrix given as
D%=Dyé, +2L* 4. [83]

Here, D} and L* correspond to the drag and shear lift coefficients. For a dilute suspension of
spherical particles in an incompressible fluid of density pf and viscosity uf,

De 18uf ve _2.594(p" uo)' v

ey M Te@my o

were suggested in the work of Drew (1976), Ahmadi (1982) and McTique ez al. (1986). Equation
[84] is consistent with the lift force for a single sphere in a uniform shear field, as obtained by
Saffman (1965). Here, d° is the diameter of the ath particulate phase. Equation [84] also assumes
that the particles are in Stokes flow regime. When the particle Reynolds number,
f a* vt I b
Reg= 24V ¥ [85]

Ho
is not sufficiently small, the drag coefficient becomes

185 v* [1 + 0.1(Re3)%™]

(du)Z l—v—m 2.5vy °
Vin

where the modifications for nondilute flows are also included. Here, v is the limiting dense packing
volume fraction for shear flows. For a single size spherical particulate phase, v,, = 0.64356 (Ma &
Ahmadi 1986). The expression for the lift coefficient for dense or high Re, flows is not available
as yet.

The constitutive equation for the mean interaction momentum supply of the fluid phase may
be obtained from [32] and [82], i.e.

Dj=

(86]

Pi=Y D@ - 87]
a=1

Constitutive equations given by [82] and [87] assume that the momentum only transfers between
the fluid and the particulate phases. The interaction momentum supply due to the collisions of
particles of different species is, thus, neglected. Whenever such interactions become important (e.g.
very dense multiphase flows or mixtures of granular particles), [82] and [87] must be modified
accordingly (e.g. by replacing the &/ — #* term in [82] with §,— 5%).

Entropy inequality [69] imposes the following restriction on the fluctuation energy source terms:

_ CfT 1 ) n _ (CaT 1 )
b = — + g% - >0. 88
P <kr il GZI p PER (88]

We assume that the fluctuation energy interactions are mainly between the fluid and particulate
phases. Furthermore,

ﬁfsf= _ Z ﬁusu’ [89]
a=1

and the direct fluctuation energy transfer between particulate phases is negligible. Note that [89]
assumes that the fluctuation energies are simply exchanged between the phases and ignores the
associated dissipations. However, this need not be of much concern since these additional
dissipations could be added to their respective ¢ terms and be modeled as part of the total
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dissipation rates. For an isothermal mixture, using [89], [88] may be restated as
) kp—a,if (CTk"—C™k*) 2 0. [90]
a=1

The constitutive equations for the fluctuation energy supply for the «th particulate phase, which
is consistent with entropy equality [90], is given as

ﬁasa — sg(Caka_ C(Tka), [91]
with
5§20 [92]

being a material parameter. The expression for the fluid turbulence energy supply then becomes
pls'=Y sy(C™k*— C*Tk"). [93]
a=1
The energy supply terms given by [91] and [93] are quite similar to the expressions obtained by
Kashiwa (1987) via a statistical analysis. The only difference is the presence of additional source
terms which are proportional to the mean velocity differences in the formulation of Kashiwa (1987)
and Besnard & Harlow (1985). These terms, which are expected to become significant for nearly
laminar flows, are neglected in the present formulation.
The constitutive relationships for multiphase turbulent flows given by [70]-[78], [81], [87), [91]
and [93] are consistent with the averaged Clausius—Duhem inequality.

DISSIPATION

Thermodynamically consistent algebraic expressions or transport equations for the dissipation
rates were suggested by Ma (1987) and Ahmadi (1989). Here only the simple algebraic expressions
are considered. Accordingly:

€t = am(ku)S/Z’ [94]

where the parameter a* has a dimension of inverse length. Equation [94] is in agreement with the
expression for the collisional dissipation rate obtained from the kinetic theories of granular
materials. Note also that ¢* now includes the dissipative parts of the fluctuation energy interaction
term. Similarly,

ef=al(k")*2 [95]

This simple algebraic expression is compatible with the expression used in the so-called one-equa-
tion turbulence model with
Cf D
a f= T f [96]
where C'P is a material parameter (constant for dilute mixtures) and A' is a length macroscale of
turbulence.

INCOMPRESSIBLE MIXTURES

For fully-saturated isothermal mixtures, when the fluid and particulate constituents are
incompressible, additional constraints given by [19], [21] and [22] are imposed on the motion. The
free energy functions /* and ' given in [61] are no longer functions of the respective densities and
the thermodynamical pressures 5* and p', given in [63], remain undefined. In this section, the
required modifications are briefly described.

Adding [19] and [21] for all the species and using [22], we find

WD+ Y (409, =0, [97]
a=1
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The constraint given by [97] must be incorporated in the entropy inequality given by [57] or [62].
Multiplying [97] by a Lagrangian multiplier p® (letter to be identified as the mean pressure in the
fluid phase) and adding the result to [57], [62] remains essentially valid with the following minor
modifications: the pressure terms are now given by [65] and P? must be replaced by P —p've,
with a similar change for the fluid phase, i.e. the constraint given by [80] must be replaced by

~0(Pi—p'vi)~ ¥ 51 (PF—pvi) 0. 98]

a=1
As a result, the constitutive equations given by [82] and [87] now become
Pt =Dy@i— 0%+ p've, [99]

and
n

=Y D0 — D)+ p'v. [100]

o=

Explicit expressions for the equations of motion now become

aaﬁq_aaa aapf a @ k&2 | 2 1 o«Ty ~a
PV g =PIy o 6<[vpvk+3(u + 1) m
6|: i 66“
(u*+ “T)< )]-*—Df‘(v —77) (101]
0x; ox;  Ox; /

and
do! op'
1,0 Wi _ eorer 0 9P
TR Al ¥

0 a*f oo"
+$[(” + ”)('; ai>]+ Z D5 — h), [102)

f j i

[p‘v‘k‘+(u + 1) m

where [18] and [20] are used. When the fluid and particles are incompressible and the mixture
is saturated and isothermal, [35], [40], [101] and [102], together with [19], [21] and [22] form
5(n + 1)+ 1 equations for determining 5(» + 1)+ 1 unknowns, #s, vs, ks and p' for a fully-
saturated turbulent multiphase flow with incompressible constituents.

RAPID GRANULAR FLOWS

For rapid flows of relatively dense heavy particles, the effect of the fluid phase is negligible or
secondary and the process of momentum transport is dominated by the particle—particle collisions.
Thus, the main stress tensor is given by [71] with the coefficients of viscosity given by [74). This
expression is in agreement with the one obtained from a kinetic formulation by Ahmadi & Ma
(1986) and Ma & Ahmadi (1988) for a collection of nearly elastic spherical particles. A detailed
comparison for spherical particles shows that

C* =0.0853[(xv*)~"' + 3.2 + 12.1824v%y] [103]
and
r=31 4+ 4 +1i(1=1rY), [104]
where r is the coefficient of restitution and the radial distribution y is given by

1 4 2.5v* + 4.5904(v*)* + 4.515439(v*)

X = I: (va>3:IOG7802l ’
1—(—
vm

{105]

with v, = 0.64356.
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Comparing the expression for the fluctuation energy fluxes given by [77] with the corresponding

expression developed in the work of Ma & Ahmadi (1988), we find
e _ 1L.2[(0) " + 3.2v* + 12.1824(v*)* x]

A+ r)[x "+ 4.8v* + 12.1184(v*)*x]’

The expression for the dissipation given by [94] is also in agreement with that used by Ahmadi &
Ma (1986), with

{106]

39t =1
= —

o

(107]

where d°* is the diameter of spherical particles.
The particulate fluctuation energy supply term may also be matched with the one obtained from
the kinetic theory, i.e.

sa(CTk! — CTk*) = 2D3(ck’ — k*), [108]
where the expression on the r.h.s. of [108] was obtained by Ma & Ahmadi (1988) with
1

C=——— []09]
1
DT, |
T, being the Lagrangian time macroscale of fluid turbulence. It appears that [108] holds if
s3CT=2cDg, s:C'M=2D3. [110]

The results presented in this section show that the present model is in complete agreement with
the kinetic model developed by Ma & Ahmadi (1988) for a dense collection of spherical particles,
including interstitial fluid effects. Similarly, it may be also shown that the developed turbulence
model is also compatible with the kinetic model of Lun et al. (1984) for granular particles. The
parameters given by [103]-[107] have to be somewhat modified for this purpose.

TWO-PHASE FLOWS

In this section, the special case of a two-phase solid-liquid mixture flow is considered. It is
assumed that the mixture is fully-saturated and the constituents are incompressible. With n =1,
(191, {211, [22], [35], (401, [65], [101] and [102] are the appropriate governing equations of motion.
When the effects of the fluctuation kinetic energy of the particulate phase are neglected and for
dilute two-phase flows, these equations become quite similar to those developed by Chen & Wood
(1985) and Elghobashi & Abou-Arab (1983). The main difference appears in the fluctuation energy
interaction term. In the present model this term is given by [108] (with ¢ given by [109]), which
is similar to the expression suggested by Pourahmadi & Humphrey (1982), rather than the
exponential form used in the work of Elghobashi & Abou-Arab (1983).

Based on Rotta’s proposal, the time macroscale was estimated by Elghobashi & Abou-Arab
(1983). In our notation their result may be restated as

r
0.16r5k . [11)

L
€

Note that [111] is for the limit of dilute two-phase flows. For dense flows, 7, may depend on the
solid volume fraction v.

CONCLUSIONS

The technique of thermodynamical formulation in turbulence modeling is extended to the
analysis of turbulent flows of dispersed multiphase solid—fluid mixtures. The ensemble-averaging
technique is applied directly to the global equations of balance for each constituent and the
conservation laws for the mean motions of various phases are developed. In particular, the
averaged form of the Clausius—Duhem inequality and the evolution equations for the fluctuation
energies of the fluid phase and the particulate constituents are derived. These equations comple-
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mented the existing balance laws for the mean turbulent flow field of solid—fluid mixtures. Based
on the averaged entropy inequality, constitutive equations for the stresses, energy and heat fluxes
of various species are developed and the closed system of equations governing the turbulent flows
of multiphase mixtures is obtained. The special case of incompressible constituents is also discussed.
It is shown that the model is consistent with the recently developed turbulence models for dilute
two-phase flows and dense rapid granular flows in special limiting cases.

The presented multiphase turbulent flow model includes the transport equations for the
fluctuation kinetic energies of the particulate constituents in addition to the fluid phase. This allows
a more accurate formulation of the expressions for the particulate normal and shear stresses;
furthermore, the model becomes applicable to highly dense mixtures for which the particle—particle
collisions become significant. It is also shown that the model is consistent with those obtained from
the kinetic theories for dense granular flows. Therefore, the model, in principle, could handle the
entire range of dilute to dense turbulent mixture flows. In Part II, extensive comparisons of the
predictions of this turbulence model with the experimental data for the case of a simple shear flow
of a dense mixture are presented.
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